VECTORS

Pearson Edexcel – Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

21	Proof	M1	for $\overrightarrow{DQ} = \frac{1}{2} (\mathbf{b} - \mathbf{a})$ oe or $\overline{EQ} = \frac{1}{2} (\mathbf{a} - \mathbf{b})$ oe	Vectors could be written on the diagram
		M1	for $\overline{PQ} = \frac{1}{2} \mathbf{a} + \overline{DQ}$ or $\frac{1}{2} \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$ oe	diagrain
			or $\overline{PQ} = -\frac{1}{2}\mathbf{a} + \mathbf{b} + \overline{EQ}$ or $-\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ oe	
		B1	for $\overline{PQ} = \frac{1}{2} \mathbf{b}$	
		C1	for complete proof with statement, eg $FE = 2PQ$ or FE is a multiple of PQ or $\mathbf{b} = 2(\frac{1}{2}\mathbf{b})$	

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

2.

6	(-9 ₁₄)	M1	for $2 \binom{3}{4} - 3 \binom{5}{-2}$ or $\binom{6}{8}$ and $\binom{15}{-6}$ or $\binom{-9}{y}$ or $\binom{x}{14}$	May be seen in two separate calculations eg $2\times 3 + -3\times 5$ and $2\times 4 + -3\times -2$ Condone incorrect notation if method is clear for this mark only
		A1	cao	

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier

3.

10	(a)	Diagram	B1	for correct vector drawn including arrow	May be drawn anywhere on the grid. Condone missing label
	(b)	$\binom{3}{-4}$	M1	for $\mathbf{a} + 2\mathbf{b}$ drawn with resultant vector or for writing \mathbf{a} and \mathbf{b} as column vectors and attempt to add $\mathbf{a} + 2\mathbf{b}$, eg $\binom{1}{2} + 2 \times \binom{1}{-3}$ or $\binom{1+2}{c}$ or $\binom{d}{2+-6}$ or $\binom{-4}{3}$	Accept consistent incorrect notation for M1
			Al	cao	

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

4.

20	$\frac{1}{4}$	P1	starts process eg $\overrightarrow{AB} = 2\mathbf{b} - 2\mathbf{a}$
	·	P1 P1 A1	process to find \overrightarrow{AP} or \overrightarrow{BP} complete process to find \overrightarrow{OP} for $\frac{1}{4}$ oe

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

22			states AB as $6\mathbf{b} - 3\mathbf{a}$ for $AX = \frac{1}{A}B$ or $\frac{1}{A}$ or \frac
		M1	for $\overrightarrow{CY} = \overrightarrow{CB} + \overrightarrow{BY}$ or $6\mathbf{b} + 5\mathbf{a} - \mathbf{b}$ (=5 $\mathbf{b} + 5\mathbf{a}$) for $\overrightarrow{CX} = 3\mathbf{a} + \text{``2}\mathbf{b} - \mathbf{a}$ '' or $\overrightarrow{CX} = 6\mathbf{b} - \frac{2}{3}$ ''($6\mathbf{b} - 3\mathbf{a}$)'' (= $2\mathbf{a} + 2\mathbf{b}$) for $\frac{2}{5}\overrightarrow{CY} = \frac{2}{5}(5\mathbf{a} + 5\mathbf{b}) = 2(\mathbf{a} + \mathbf{b}) = \overrightarrow{CX}$
			5 5 5 (24 - 36) 2(4 - 6)

Pearson Edexcel - Sample Paper 3 - (Calculator) Higher Tier

6.

18	$\overrightarrow{OM} = 3a$	4	P1 For process to start e.g. $\overrightarrow{OM} = 3a$ or
	$\vec{AB} = 6\mathbf{b} - 6\mathbf{a}$		$\vec{MA} = 3a$
	$\overrightarrow{MC} = 3\mathbf{a} + 2(6\mathbf{b} - 6\mathbf{a})$ $= 12\mathbf{b} - 9\mathbf{a}$ $= 3(4\mathbf{b} - 3\mathbf{a})$ $\overrightarrow{MN} = k\mathbf{b} - 3\mathbf{a}$ \overrightarrow{MNC} is a straight line so		P1 For process to find \overrightarrow{AB} (=6 b - 6 a) P1 For process to find \overrightarrow{MC} (=3 a + 2(6 b - 6 a) and \overrightarrow{MN} (= k b - 3 a) P1 For correct process to find k e,g. $3k$ b - 9 a = 12 b - 9 a
	\overrightarrow{MC} is a scalar multiple of \overrightarrow{MN}		A1

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

7.

23 (a)(i)	a + b	2	B1 for a + b oe
(ii)	$-\mathbf{a} + 3\mathbf{b}$		B1 for -a + 3b oe
(b)	$\frac{3}{4}a + \frac{3}{4}b$	2	M1 for $\overrightarrow{OP} + \frac{1}{4}\overrightarrow{PR}$ or $\overrightarrow{OR} + \frac{3}{4}\overrightarrow{RP}$ (may be in terms of a and b) A1 for $\frac{3}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ or $\frac{3}{4}(\mathbf{a} + \mathbf{b})$
*(c)	$OS = \frac{3}{4}OT$	2	C2 (dep A1) for S divides OT in the ratio 3:1 oe or $OS = \frac{3}{4} OT$ oe (C1 (dep A1) for S lies on OT or that OT and PR intersect at S oe)

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

8.

27	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ $= \mathbf{a} + \mathbf{b}$ $\overrightarrow{AC} = \frac{7}{2} \overrightarrow{AB}$ $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $= 2\mathbf{a} + \mathbf{b} + \frac{7}{2} (\mathbf{a} + \mathbf{b})$	$\frac{11}{2}\mathbf{a} + \frac{9}{2}\mathbf{b}$		M1 for $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ (= -(2 a + b) + (3 a + 2 b)) or a + b M1 for $\overrightarrow{AC} = \frac{7}{2} \overrightarrow{AB}$ or $\overrightarrow{BC} = \frac{5}{2} \overrightarrow{AB}$, may be in terms of a and b M1 (dep M2) for complete method to find \overrightarrow{OC} in terms of a and b A1 for $\frac{11}{2}$ a + $\frac{9}{2}$ b or equivalent simplest form (SCB2 for $\frac{11}{2}$ a + $\frac{23}{2}$ b or $\frac{11}{2}$ a + $\frac{19}{2}$ b)
----	--	--	--	--

Pearson Edexcel - Monday 9 June 2014 - Paper 1 (Non-Calculator) Higher Tier

*24		Ü	Proof	3	M1 for $\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} (= \mathbf{n} - \mathbf{m})$ or $\overrightarrow{NM} = \overrightarrow{OM} + \overrightarrow{NO} (= \mathbf{m} - \mathbf{n})$ or $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} (= 2\mathbf{n} - 2\mathbf{m})$ or $\overrightarrow{BA} = \overrightarrow{OA} + \overrightarrow{BO} (= 2\mathbf{m} - 2\mathbf{n})$ M1 for $\overrightarrow{MN} = \mathbf{n} - \mathbf{m}$ and $\overrightarrow{AB} = 2\mathbf{n} - 2\mathbf{m}$ oe C1 (dep on M1, M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$ or \overrightarrow{AB} is a multiple of \overrightarrow{MN} [SC M1 for $\overrightarrow{MN} = 0.5\mathbf{n} - 0.5\mathbf{m}$ and $\overrightarrow{AB} = \mathbf{n} - \mathbf{m}$ C1 (dep on M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$ or \overrightarrow{AB} is a multiple of of \overrightarrow{MN}]
-----	--	---	-------	---	---

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

10.

24	(a)	$\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ $\overrightarrow{ON} = \overrightarrow{OA} + \frac{2}{3} \overrightarrow{AB}$ $\overrightarrow{ON} = \mathbf{a} + \frac{2}{3} (-\mathbf{a} + \mathbf{b})$ $= \frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b}$ OR $\overrightarrow{ON} = \overrightarrow{OB} + \frac{1}{3} \overrightarrow{BA}$ $\overrightarrow{ON} = \mathbf{b} + \frac{1}{3} (-\mathbf{b} + \mathbf{a})$ $= \frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b}$	$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$	3	M1 for correct vector equation involving \overrightarrow{ON} , eg. $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$, may be written, partially or fully, in terms of \mathbf{a} and \mathbf{b} , e.g. $(\overrightarrow{ON} =)$ $\mathbf{a} + \frac{2}{3} \overrightarrow{AB}$ M1 for showing answer requires $\overrightarrow{AN} = \frac{2}{3} \overrightarrow{AB}$ or $\overrightarrow{BN} = \frac{1}{3} \overrightarrow{BA}$ A1 $\frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b}$ oe
	(b)	$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AC} + \overrightarrow{CD}$ $= \mathbf{a} + \mathbf{b} + \mathbf{b}$ $= \mathbf{a} + 2\mathbf{b}$ $\overrightarrow{OD} = 3\left(\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}\right)$ $\overrightarrow{OD} = 3\overrightarrow{ON}$	Proof	3	M1 for a correct vector statement for \overrightarrow{OD} or \overrightarrow{ND} in terms of \mathbf{a} and \mathbf{b} , e.g. $\overrightarrow{OD} = \mathbf{a} + \mathbf{b} + \mathbf{b}$ oe or $\overrightarrow{ND} = \frac{2}{3}(-\mathbf{b} + \mathbf{a}) + \mathbf{b} + \mathbf{b}$ oe A1 for correct and fully simplified vectors for \overrightarrow{ON} (may be seen in (a)) and for \overrightarrow{OD} (= $\mathbf{a} + 2\mathbf{b}$) or \overrightarrow{ND} (= $\frac{2}{3}\mathbf{a} + \frac{4}{3}\mathbf{b}$) C1 (dep on A1) for statement that \overrightarrow{OD} or \overrightarrow{ND} is a multiple of \overrightarrow{ON} (+ common point)

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

11.

27	(a)	a - b	1	B1 for a - b oe
	(b)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$	3	M1 for a correct vector statement for \overrightarrow{NR} eg. $(\overrightarrow{NR} =) \overrightarrow{NQ} + \overrightarrow{QR}$ or $(\overrightarrow{NR} =) \overrightarrow{NS} + \overrightarrow{SR}$ M1 for $\frac{2}{5}SQ$ (+ QR) or $\frac{3}{5}QS$ (+ SR) (SQ , QR , QS , SR may be written in terms of a and b) A1 for $\frac{2}{5}(\mathbf{a} - \mathbf{b}) + \mathbf{b}$ oe or $\frac{3}{5}(\mathbf{b} - \mathbf{a}) + \mathbf{a}$ oe

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier

26	(a)	6b – 3a	1	B1 for 6b – 3a oe
	(b)		4	M1 for $\overrightarrow{AX} = \frac{1}{3} \overrightarrow{AB}$ or $\frac{1}{3}$ '(6b - 3a)' or ft to 2b - a
				M1 for $\overrightarrow{OY} = \overrightarrow{OB} + \overrightarrow{BY} = 6\mathbf{b} + 5\mathbf{a} - \mathbf{b} (= 5\mathbf{b} + 5\mathbf{a})$ oe
				M1 for $\overrightarrow{OX} = 3\mathbf{a} + \mathbf{2b} - \mathbf{a'} = 2\mathbf{a} + 2\mathbf{b}$ oe Or \longrightarrow
				$OX = 6\mathbf{b} - \frac{2}{3} (6\mathbf{b} - 3\mathbf{a}) = 2\mathbf{a} + 2\mathbf{b}$ oe
				C1 for $\frac{2}{5}\overrightarrow{OY} = \frac{2}{5} \times 5(\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} + \mathbf{b}) = \overrightarrow{OX}$

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

13.

		1			
28	(a)		$\mathbf{a} - 3\mathbf{b}$	1	B1 for $\mathbf{a} - 3\mathbf{b}$ oe
	(b)			4	M1 for (NC =) $2\mathbf{a} - 2\mathbf{b}$ oe
					M1 for $(NM =) b + \frac{1}{2}"(a - 3b)"$
					A1 for $\frac{1}{2}(\mathbf{a} - \mathbf{b})$ oe and $2\mathbf{a} - 2\mathbf{b}$ oe
					C1 for NC is a multiple of NM (+ common point)
					OR
					M1 for (NC =) $2\mathbf{a} - 2\mathbf{b}$ oe
					M1 for (MC =) $\frac{1}{2}$ "(a-3b)"+a
					A1 for $\frac{3}{2}(\mathbf{a} - \mathbf{b})$ oe and $2\mathbf{a} - 2\mathbf{b}$ oe
					C1 for NC is a multiple of MC (+ common point)
					OR
					M1 for $(NM =) b + \frac{1}{2}"(a - 3b)"$
					M1 for (MC =) $\frac{1}{2}$ "(a-3b)"+a
					A1 for $\frac{1}{2}(\mathbf{a} - \mathbf{b})$ oe and $\frac{3}{2}(\mathbf{a} - \mathbf{b})$ oe
					C1 for NM is a multiple to MC (+ common point)

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

26	(a)		b – a	1	B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$
	(b)	$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ $\overrightarrow{AP} = \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ $\overrightarrow{OP} = \mathbf{a} + \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ OR $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ $\overrightarrow{BP} = \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$ $\overrightarrow{OP} = \mathbf{b} + \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$	$\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	3	B1 for $\frac{3}{4} \times \text{`}(\mathbf{b} - \mathbf{a})\text{'}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OA} + \overrightarrow{AP}$ or $(\overrightarrow{OP} =) \overrightarrow{OA} + \frac{3}{4} \overrightarrow{AB}$ or $\mathbf{a} \pm \frac{3}{4} \times \text{`}(\mathbf{b} - \mathbf{a})\text{'}$ A1 for $\frac{1}{4}(\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ OR B1 for $\frac{1}{4} \times \text{`}(\mathbf{a} - \mathbf{b})\text{'}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OB} + \overrightarrow{BP}$ or $(\overrightarrow{OP} =) \overrightarrow{OB} + \frac{1}{4} \overrightarrow{BA}$ or $\mathbf{b} \pm \frac{1}{4} \times \text{`}(\mathbf{a} - \mathbf{b})\text{'}$ A1 for $\frac{1}{4}(\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

15.

23	(a)		b – a	1	B1 $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$
	(b)	$\overrightarrow{BK} = 2 \times \overrightarrow{AB} = 2 \times (\mathbf{b} - \mathbf{a})$ $\overrightarrow{CK} = \overrightarrow{CB} + \overrightarrow{BK} = \mathbf{a} + 2 \times (\mathbf{b} - \mathbf{a})$	2b – a	3	M1 for a correct vector statement for \overrightarrow{CK} eg. $\overrightarrow{CK} = \overrightarrow{CA} + \overrightarrow{AK}$ or $\overrightarrow{CK} = \overrightarrow{CB} + \overrightarrow{BK}$ M1 for $\overrightarrow{BK} = 2\overrightarrow{AB}$ or $\overrightarrow{BK} = 2(\mathbf{b} - \mathbf{a}^*)$ or $\overrightarrow{AK} = 3\overrightarrow{AB}$ or $\overrightarrow{AK} = 3(\mathbf{b} - \mathbf{a}^*)$ (may be seen as part of a vector equation BUT $2(\mathbf{b} - \mathbf{a})$ or $2(\mathbf{b} - \mathbf{a})$ or $3(\mathbf{b} - \mathbf{a})$ or $3(\mathbf{b} - \mathbf{a})$ by itself does not score M1) A1 $2\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + 2\mathbf{b}$

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

16.

26	(a)	AB = AO + OB	-2a + 3b	1	B1 for $-2a + 3b$ or $3b - 2a$
	(b)	$ \frac{\mathbf{UARY}}{OP} = 2\mathbf{a} + \frac{2}{5}(3\mathbf{b} - 2\mathbf{a}) $	$\frac{6}{5}$ (a + b) is parallel to a + b	3	M1 for $2\mathbf{a} \pm \frac{2}{5}$ ('3 $\mathbf{b} - 2\mathbf{a}$ ') OR $3\mathbf{b} \pm \frac{3}{5}$ ('2 $\mathbf{a} - 3\mathbf{b}$ ')
		$=\frac{6}{5}\mathbf{a}+\frac{6}{5}\mathbf{b}$			A1 for $\frac{6}{5}\mathbf{a} + \frac{6}{5}\mathbf{b}$ oe A1 for $\frac{6}{5}(\mathbf{a} + \mathbf{b})$ is parallel to $\mathbf{a} + \mathbf{b}$ oe
		$=\frac{6}{5} (\mathbf{a} + \mathbf{b})$ parallel			J

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

27 (a)	$\overrightarrow{OP} = \mathbf{a} + \mathbf{b}$	$\frac{1}{2}$ (a + b)	2	M1 for $\overrightarrow{OP} = \overrightarrow{OT} + \overrightarrow{TP}$ or $\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OP}$ or
	$\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OP}$			$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OT} + \frac{1}{2}\overrightarrow{TP}$ or $\overrightarrow{OP} = \mathbf{a} + \mathbf{b}$
	2			A1 for $\frac{1}{2}$ (a + b) oe
				SC : B1 for a + b ÷ 2
(b)		$-\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$	2	M1 for $-\mathbf{a} + \frac{1}{2}(\mathbf{a} + \mathbf{b})$ " oe or $\overrightarrow{TM} = \overrightarrow{TO} + \overrightarrow{OM}$ or $\overrightarrow{TM} = \overrightarrow{TP} + \overrightarrow{PM}$
	$-a + \frac{1}{2}(a + b)$			A1 ft

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

18.

22	(a)		b – a	1	B1 cao
	(b)	$OP = OA + AP$ $= OA + \frac{2}{3} AB = \mathbf{\underline{a}} + \frac{2}{3} (\mathbf{\underline{b}} - \mathbf{\underline{a}})$	$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$		M1 for $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ or $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ M1 for $\overrightarrow{AP} = k$ (b - a) ft from (a) with $0 < k < 1$ or $\overrightarrow{AP} = \frac{2}{3}\overrightarrow{AB}$ or $\overrightarrow{BP} = k$ (a - b) ft from (a) with $0 < k < 1$ or $\overrightarrow{BP} = \frac{1}{3}\overrightarrow{BA}$ A1 for $\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe (must be in its simplest form)

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

19.

7	(a)	$\binom{4}{-2}$	2	B1 for 1 component correct	
				If 0 scored, then SC1 for $\binom{-4}{2}$	
				or $\left(\frac{4}{-2}\right)$ or $(4, -2)$	Penalise first appearance of vinculum or poor form in vector but condone second use
	(b)	$\binom{1}{9}$ oe	2	B1 for 1 component correct or $\binom{4}{9}$	
		$\left(\frac{9}{4}\right)$ oe		seen	

OCR GSCE - Monday 9 November 2020 - Paper 6 (Calculator) Higher Tier

20		-9	M2 for $\binom{7}{2k+11}$ or M1 for $\binom{7}{2k+11}$ or $\binom{4}{2k}$	
			M1 for $(their 2k + 11) = -(their 7)$	their 7 must follow from their working for M2 and must not be -1

OCR GSCE – Monday 11 November 2019 – Paper 6 (Calculator) Higher Tier

21.

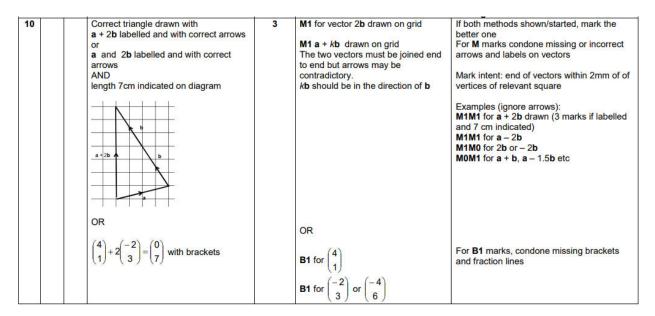
9	а	2.5 5	3	B2 for $[k =] 2.5$ or B1 for $\binom{4}{2}$ B1 for $[n =] 5$	
9	b	(5) (5) 2b	1 1 1	Correct arrow and label $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$ or $\mathbf{a} + 2\mathbf{b}$ Correct arrows on \mathbf{a} and $2\mathbf{b}$ Correct labels on \mathbf{a} and $2\mathbf{b}$	Accept single arrowhead

OCR GSCE – Tuesday 21 May 2019 – Paper 4 (Calculator) Higher Tier

22.

15	Accept any correct justification e.g. two of	5	B1 for [AB =] 3b – 3a oe
	$OC = \mathbf{a} + 2\mathbf{b}$		M1 for each of e.g.
	$OD = 2\mathbf{a} + 4\mathbf{b}$		OC = $3\mathbf{a} + \frac{2}{3}(3\mathbf{b} - 3\mathbf{a})$ oe soi by $\mathbf{a} + 2\mathbf{b}$
	CD = a + 2 b		OD = $3b + 2a + b$ oe soi by $2a + 4b$
	and		$CD = \frac{1}{3} (3b - 3a) + 2a + b$ oe soi by $a + 2b$
	correct conclusion e.g. OD = 2(a + 2 b) = 2OC or OD is a multiple of OC or OC		to a maximum of M2 and may be on diagram and condone notation OCD for OD only
	= CD (must be consistent with vectors found)		M1 for [OD =] 2(a + 2b) or 2OC = OD or OC = CD and must be consistent with vectors found
	(mast 25 consistent man vocation loanity)		If 0 scored M1 for any correct route leading to OC, CD or OD e.g. OC = OB + BC

OCR GSCE - Monday 12 November 2018 - Paper 6 (Calculator) Higher Tier


20	(a)	eg. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	3	B2 for one correct answer or	Other correct answers include: $\binom{5}{3}$, $\binom{-1}{0}$, $\binom{-3}{-1}$, $\binom{-7}{-3}$, $\binom{-9}{-4}$, $\binom{-11}{-5}$, $\binom{-13}{-6}$ and $\binom{-15}{-7}$ For others, check that top + 5 is double bottom + 2
	(b)	m = -2, n = 4	5	B1 for $\binom{4m}{m}$ or $\binom{5n}{2n}$ soi and M1 for $4m + 5n = 12$ or $m + 2n = 6$ and M1 for multiplication by scalar(s) to equate coefficients in m or n or reduction to one variable by substitution e.g. $4(6-2n) + 5n = 12$ and M1 for elimination or simplification to 3m = -6 or $3n = 12$ oe	

OCR GSCE – Thursday 7 June 2018 – Paper 5 (Non - Calculator) Higher Tier

24.

3	(a)	$\begin{pmatrix} 2 \\ 9 \end{pmatrix}$	1		In (a) and (b) penalise first occurrence of fraction line in vector
	(b)	(1 ₁₀)	2	B1 for answer $\begin{pmatrix} 1 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 10 \end{pmatrix}$	-

OCR GSCE – Tuesday 12 June 2018 – Paper 6 (Calculator) Higher Tier

OCR GSCE - Wednesday 8 November 2017 - Paper 6 (Calculator) Higher Tier

26.

16	(a)	(i)	b – a	1		_
		(ii)	$\frac{1}{4}(\mathbf{b} - \mathbf{a})$ or $\frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{a}$	1	FT from (a)(i)	
	(b)		$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BF} = \frac{1}{4}(\mathbf{b} - \mathbf{a}) + \frac{1}{2}\mathbf{b}$ leading to $\frac{1}{4}(3\mathbf{b} - \mathbf{a}) \text{ as given.}$	2	M1 for their part (a)(ii) + $\frac{1}{2}$ b oe	(a)(ii) must be in terms of a and b
	(c)		$\overline{AG} = \frac{3}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$	3	B2 for $\overrightarrow{AG} = \frac{3}{2}\mathbf{b} - \frac{1}{2}\mathbf{a}$	Allow vectors found in reverse throughout eg. \overrightarrow{GA} instead of \overrightarrow{AG}
			$\overrightarrow{AG} = 2\overrightarrow{EF}$ oe so are parallel.		M1 for $\mathbf{b} + \frac{1}{2}$ (their part (a)(i)) oe	Condone "AG and EF are multiples of each other"
						Full marks dependent on both AG and EF in correct simplified forms

OCR GSCE – Thursday 8 June 2017 – Paper 5 (Non - Calculator) Higher Tier

	11	(a)	(i) (ii)	Draws vector $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and Draws vector $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$	2	B1 for each	In (a), penalise first instance only where direction arrow is omitted Condone good freehand mark intention Could be part of correct vector triangle
		(b)		They are different in direction oe	1	Accept correct comments that mention the directions of the vectors	Accept any comment implying the directions of the 2 vectors are different e.g. 'They are not parallel' 'They are going in different directions' 'They are going in opposite x-directions' 'Vector A is a [vertical] reflection of vector B' 'One goes left, the other goes right' 'One goes in positive direction the other goes in negative direction' 'One has -2 and the other has 2' Condone 'They are going in opposite directions' Do not accept mention of just 1 vector only unless the reason clearly implies a comparison e.g. Do not accept 'Vector a goes right' 'One of them has a minus sign'
-							
		(c)		-3	2	M1 for $k \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -12 \\ 0 \end{pmatrix}$ oe	M1 implied by answer $\begin{pmatrix} -3\\0 \end{pmatrix}$

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

28.

1	(a)	[p =] 5 [q =] -5	2 1 AO1.2 1 AO1.3a	B1 for each	
	(b)	c = 3a	3	B1 for each	
		d = a + b	3 AO1.3a		
		e = a - b			

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

18	$\overrightarrow{ZY} = -2c + 2a + 2b$ $\overrightarrow{SR} = c + (-c + a + b)$ $\overrightarrow{SR} = a + b$ $\overrightarrow{PQ} = a + b$	5 1 AO1.3a 2 AO2.2 2 AO2.4b	M1 for $\overrightarrow{ZY} = -2c + 2a + 2b$ M1 for $\overrightarrow{SR} = c + (-c + a + b)$ M1 for $\overrightarrow{SR} = a + b$ M1 for $\overrightarrow{PQ} = a + b$	
	SR = PQ so they are parallel			

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier 30.

Q	Answer	Mark	Comments
2	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	B1	

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier

31.

23	$(\overrightarrow{JN}=)\frac{3}{2}\times 4\mathbf{b}$ or $6\mathbf{b}$	M1	oe eg (NJ=)-6 b implied by JL=10 b may be seen on diagram	
	$(\overrightarrow{JK} =)$ their $6\mathbf{b} + 4\mathbf{b} - 7\mathbf{a}$ or $10\mathbf{b} - 7\mathbf{a}$	M1dep	oe eg (KJ=) 7 a - 10 b	
	$5b - \frac{7}{2}a \text{ or } 5b - 3.5a$	A1	oe eg $\frac{1}{2}(10\mathbf{b} - 7\mathbf{a})$ SC2 3.5 $\mathbf{a} - 5\mathbf{b}$ or $\frac{7}{2}\mathbf{a} - 5\mathbf{b}$	
	Additional Guidance			

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 32.

22(a)	- 3b + 6a + 7.5b (= 6a + 4.5b) or 6a + 7.5b - 3b (= 6a + 4.5b) or 6a + 7.5b - (6a + 4.5b) = 3b	B1	oe rearranged equation	using all 5 terms
	Additional Guidance			
	3b + 6a + 4.5b = 6a + 7.5b			B1
	$6\mathbf{a} + 4.5\mathbf{b} + 3\mathbf{b} = 6\mathbf{a} + 7.5\mathbf{b}$			B1
	7.5b - 3b = 4.5b, so $6a + 4.5b$			В0
	$6\mathbf{a} + 7.5\mathbf{b} - 3\mathbf{b} = 4.5\mathbf{b}$			В0

	Alternative method 1: equal ratios from ka + 3b and 6a + 4.5b				
	(BC =) ka + 3b or k: 6 = 3: 4.5 or k: 3 = 6: 4.5	M1	oe ratio		
	3 × 6 ÷ 4.5 or 4 a + 3 b	M1dep	oe		
	4	A1			
	Alternative method 2: scale factor	from ka +	3b and 6a + 4.5b		
	(BC =) $k\mathbf{a} + 3\mathbf{b}$ or $4.5 \div 3$ or $\frac{3}{2}$		oe fractions or decimals		
22(b)	or $3 \div 4.5$ or $\frac{2}{3}$	M1			
22(5)	or $4.5 \div 6$ or $\frac{3}{4}$				
	or $6 \div 4.5$ or $\frac{4}{3}$				
	$6 \div \text{their } \frac{3}{2}$		oe		
	or $6 \times \text{their } \frac{2}{3}$				
	or $3 \div \text{their } \frac{3}{4}$	M1dep			
	or $3 \times \text{their } \frac{4}{3}$				
	or 4 a + 3 b				
	4	A1			
	The mark scheme for question 22(b) contin	ues on the next page		

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier 33.

13(a)	-2 a	B1	oe eg -a -a or 2(-a)		
	Additional Guidance				
	Do not accept in column vector form unless correct answer is also seen				
	Do not accept -a2 for -2a				

13(b)	$\binom{-8}{2}$ drawn on the grid with direction shown	B2	\pm 1/4 centimetre square $B1 \begin{pmatrix} -8 \\ 2 \end{pmatrix} \text{ seen in working}$ or $\text{correct line drawn with incorrect direction or no direction shown}$ or $\text{correctly joined vectors for } \mathbf{c} \text{ and } -\mathbf{d} \text{ with correct directions shown}$		
	Add	ditional G	Buidance		
	Mark intention, line does not need to be ruled and ignore all labelling for ${f c},{f d}$ and ${f c}-{f d}$				

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 34.

14	1 - 0.3 - 0.15 - 0.35 or 1 - 0.8 or 0.2 or 0.15 + 0.35 (+ 0.2) or 0.5 (+ 0.2) or 1 - 0.3 or A' U B clearly shaded on diagram	M1	oe			
	0.7	A1	oe fraction, decimal or p	ercentage		
	Additional Guidance					
	Do not award M1 for 0.15 + 0.35 or 0. calculation					
	eg 0.15 + 0.35 = 0.5, 0.5 + 0.3 = 0.8	МО				

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 35.

	$-\frac{1}{3}a$	B1		
23	Additional Guidance			

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier 36.

22	A U B'	B1	
----	--------	----	--

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 37.

44(0)	(1) (-1)	B2	B1 for 1 correct value in correct position Condone a divisor line	
11(a)	Additional Guidance			

	(-2) seen	M1
	Valid reason	eg $\begin{pmatrix} -2\\4 \end{pmatrix} = 2 \times \begin{pmatrix} -1\\2 \end{pmatrix}$ $\begin{pmatrix} -2\\4 \end{pmatrix} = 2\mathbf{b}$ A1 $\begin{pmatrix} -2\\4 \end{pmatrix} \text{ is a multiple of } \begin{pmatrix} -1\\2 \end{pmatrix}$ $\mathbf{a} + 2\mathbf{c} \text{ is a multiple of } \mathbf{b}$ $2\mathbf{b} = \mathbf{a} + 2\mathbf{c}$
	Additio	onal Guidance
	Condone vectors written as coordinates,	eg (-1, 2) is half of (-2, 4)
	Must see $\begin{pmatrix} -2\\4 \end{pmatrix}$ or $(-2, 4)$ to award the A	\ mark
11(b)	Condone missing brackets and / or divisor	or lines
. 1(5)	$\binom{-2}{4}$ seen and both gradient –2	M1A1
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ seen and double so parallel	M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and half so parallel	M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and $\mathbf{a} + 2\mathbf{c}$ is $2\mathbf{b}$	M1A1
	$\begin{pmatrix} -2\\4 \end{pmatrix}$ seen and b = $\frac{1}{2}$ a + 2 c	M1A0
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ seen and both have same ratio	M1A0
	$\frac{-2}{4}$ and $\frac{-1}{2}$ both equal -0.5	M1A0

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier 38.

	Alternative method 1 Shows that	CB (or BC	c) is equal and parallel to DE (or ED)
	$(\vec{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\vec{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$	M1	oe method
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC}
	CB is equal and parallel to DE	A1	Must see a correct vector for first A1 and have a statement oe eg CB is equal and parallel to ED
	Alternative method 2 Shows that	BE (or EB	i) is equal and parallel to CD (or DC)
26	$(\vec{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\vec{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\vec{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\vec{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method
	$(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (\overrightarrow{DC} =) $-\mathbf{a}$ - 2 \mathbf{b}
	BE is equal and parallel to CD	A1	Must see two correct vectors for first A1 and have a statement oe eg BE is equal and parallel to DC

Mark scheme continues on the next page

	$(\overrightarrow{CB} =) - (\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) - (\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) - \mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe method
26	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CB} or \overrightarrow{BC} or \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (\overrightarrow{DC} =) $-\mathbf{a}$ - 2 \mathbf{b}
	$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is parallel to DE and BE is parallel to CD	A1	Must see three correct vectors and have two statements oe eg $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$ and BC is parallel to DE and BE is parallel to DC

Mark scheme continues on the next page

Additional Guidance is on the next page

$(\overrightarrow{CB} =) -(\mathbf{b} - 2\mathbf{a}) - 2\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) \mathbf{b} - 2\mathbf{a} + 2\mathbf{b} + \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{CD} =) -(\mathbf{b} - 2\mathbf{a}) - (\mathbf{a} - 3\mathbf{b})$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ or $(\overrightarrow{DC} =) (\mathbf{a} - 3\mathbf{b}) + (\mathbf{b} - 2\mathbf{a})$	M1	oe	
$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ or $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ or $(\overrightarrow{EB} =) -\mathbf{a} - 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$	A1	Must see correct method for \overrightarrow{CD} or \overrightarrow{DC} oe eg (\overrightarrow{BE} =) \mathbf{a} + 2 \mathbf{b} and (
$(\overrightarrow{CB} =) \mathbf{a} - 3\mathbf{b}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{CD} =) \mathbf{a} + 2\mathbf{b}$ and CB is equal to DE and BE is equal to CD	A1	Must see three correct vectors two statements oe eg $(\overrightarrow{BC} =) 3\mathbf{b} - \mathbf{a}$ and $(\overrightarrow{BE} =) \mathbf{a} + 2\mathbf{b}$ and $(\overrightarrow{DC} =) -\mathbf{a} - 2\mathbf{b}$ and BC is equal to DE and BE is equal to DC	ctors and have
,	Additional Guidance		
Choose the method that gives most	Choose the method that gives most marks		
Ignore incorrect vectors if not contra	gnore incorrect vectors if not contradictory		
For parallel allow in the same direct	For parallel allow in the same direction or in the opposite direction		
For equal to allow = or the sar	ne as		
Condone incorrect notation if unamle eg $CB = -(b-2a) - 2b - a$	biguous		M1

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier 39.

	(BC =) 5a - 2b - 3a - b or 2a - 3b or (CD =) 3a + b + 3a - 9b or 6a - 8b or (BD =) 5a - 2b + 3a - 9b or 8a - 11b	M1	oe eg (CB =) 3a + b - 5a + 2b or -2a + 3b or (DC =) -3a + 9b - 3a - b or -6a + 8b or (DB =) -3a + 9b - 5a + 2b or -8a + 11b Allow with brackets eg (BC =) 5a - 2b - (3a + b)
23	Correct expressions for any two of BC , CD and BD	M1dep	oe eg1 correct expressions for <i>BC</i> and <i>DB</i> eg2 correct expressions for <i>CB</i> and <i>DC</i> Allow with brackets eg (<i>BC</i> =) 5a - 2b - (3a + b) and (<i>DB</i> =) -(3a - 9b) - (5a - 2b)
	Correct simplified expressions for any two of <i>BC</i> , <i>CD</i> and <i>BD</i> and valid explanation and No	A1	oe eg correct expressions for BC and DB and valid explanation and No eg BC = 2 a - 3 b and CD = 6 a - 8 b and 3(2 a - 3 b) = 6 a - 9 b and No or DC = -6 a + 8 b and BD = 8 a - 11 b and DC is not a multiple of BD and not straight

	riaditional outdution	
	Award marks for correct expressions, ignoring any incorrect ones unless contradictions of correct ones	
	BAD means BD	
	BD = 5a - 2b + 3a - 9b or $8a - 11b$	
	and BAD = their BC + their CD and answer not 8a - 11b	
	Do not take BAD to be a contradiction to BD	
	Two correct simplified expressions used for a valid explanation and saying No with any incorrect non-contradictory expressions seen	M2A1
	Condone absence of vector notation	
	eg Condone CD to mean the vector from C to D	
	$\stackrel{ ightarrow}{CD}$ means the vector from C to D and $\stackrel{\longleftarrow}{CD}$ means the vector from D to C	
	Do not allow any misreads	
	Missing brackets may be recovered	
23	Allow for up to M2 expressions like	
cont	(BC =) 5a - 2b + -3a + -b	
	Valid explanations:	
	eg1 $BC = 2a - 3b$ and $CD = 6a - 8b$ and $3(2a - 3b) = 6a - 9b$	
	is acceptable as there is a matching coefficient of a	
	eg2 $CD = 6a - 8b$ and $BD = 8a - 11b$ and $2(6a - 8b) = 12a - 16b$	
	is \underline{not} acceptable because there is no matching coefficient of \boldsymbol{a} or \boldsymbol{b}	
	eg3 $BC = 2a - 3b$ and $CD = 6a - 8b$ and $6a - 8b = 3(2a - 2.6b)$	
	is acceptable because there is a matching coefficient of ${\bf a}$ and no error in factorisation (just a truncation)	
	eg4 $BC = 2a - 3b$ and $CD = 6a - 8b$ and $3(2a - 3b) = 6a - 10b$	
	is not acceptable because there is an error in expansion	
	Allow not parallel or not same gradient for No	
	Allow DC is not a factor of BD as a valid explanation	
	Do not allow DC is not a scalar of BD as a valid explanation	
	Look for decision in working lines if answer line is blank	
	Note that BD = BC + CD is a fact but is not a valid explanation	

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier

40.

	$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$ B1	
1	Additional Guid	dance

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

41.

2	(7 (-5)	B1	
---	------------	----	--

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

25(a)	$\overrightarrow{BC} = 2\mathbf{a} - 3\mathbf{b} \text{or}$ $\overrightarrow{CB} = -2\mathbf{a} + 3\mathbf{b} \text{or}$ $\overrightarrow{AM} = \mathbf{a} \text{or} \overrightarrow{MA} = -\mathbf{a} \text{or}$ $\overrightarrow{BN} = \frac{2}{5} \overrightarrow{BC} \text{or} \overrightarrow{CN} = -\frac{3}{5} \overrightarrow{BC}$	M1	oe
25(2)	$\mathbf{a} + \frac{3}{5}(-2\mathbf{a} + 3\mathbf{b})$ or $-\mathbf{a} + 3\mathbf{b} + \frac{2}{5}(2\mathbf{a} - 3\mathbf{b})$	M1	oe
	$-\frac{1}{5}\mathbf{a}+\frac{9}{5}\mathbf{b}$	A1	oe eg $-0.2\mathbf{a} + 1.8\mathbf{b}$ or $\frac{1}{5}(9\mathbf{b} - \mathbf{a})$ Must collect terms
25(b)	→ MN is not a multiple of AB	B1ft	oe